

Individual Competition Sept. 20, 2014

English version

Problem I-1

Determine all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)$$

holds for all $x, y \in \mathbb{R}$.

Problem I–2

We consider dissections of regular *n*-gons into n-2 triangles by n-3 diagonals which do not intersect inside the *n*-gon. A bicoloured triangulation is such a dissection of an *n*-gon in which each triangle is coloured black or white and any two triangles which share an edge have different colours. We call a positive integer $n \ge 4$ triangulable if every regular *n*-gon has a bicoloured triangulation such that for each vertex A of the *n*-gon the number of black triangles of which Ais a vertex is greater than the number of white triangles of which A is a vertex.

Find all triangulable numbers.

Problem I-3

Let ABC be a triangle with AB < AC and incentre I. Let E be the point on the side AC such that AE = AB. Let G be the point on the line EI such that $\angle IBG = \angle CBA$ and such that E and G lie on opposite sides of I.

Prove that the line AI, the perpendicular to AE at E, and the bisector of the angle $\measuredangle BGI$ are concurrent.

Problem I–4

For integers $n \ge k \ge 0$ we define the *bibinomial coefficient* $\binom{n}{k}$ by

$$\binom{n}{k} = \frac{n!!}{k!!(n-k)!!}.$$

Determine all pairs (n,k) of integers with $n \ge k \ge 0$ such that the corresponding bibinomial coefficient is an integer.

Remark. The double factorial n!! is defined to be the product of all even positive integers up to n if n is even and the product of all odd positive integers up to n if n is odd. So e.g. 0!! = 1, $4!! = 2 \cdot 4 = 8$, and $7!! = 1 \cdot 3 \cdot 5 \cdot 7 = 105$.